
1

Python Programming

Kütüphaneler

NTP – Nesne Tabanlı Programlama

• NTP’yi öğrendiğinizde Python Programlama’da

bir anlamda “boyut atlamış” olacaksınız.

• Python’a ilişkin okuduğunuz şeyler zihninizde

daha anlamlı izler bırakmaya başlayacaktır.

Sınıflar

• NTP’de en önemli kavram sınıflardır.

• Zaten NTP denince ilk akla gelen şey de genellikle sınıflar olmaktadır.

• Sınıflar yapı olarak fonksiyonlara benzetilebilir.

• Fonksiyonlar yardımıyla farklı değişkenleri ve veri tiplerini, tekrar kullanılmak

üzere bir yerde toplayabiliyorduk.

• Sınıflar yardımıyla da farklı fonksiyonları, veri tiplerini, değişkenleri, metotları

gruplandırabiliyoruz.

• Fonksiyonları tanımlarken def parçacığından yararlanıyorduk. def deneme():

• Sınıfları tanımlarken ise class parçacığından faydalanıyoruz: class BirOrnek:

Sınıf Tanımlamak

• Tıpkı fonksiyonlarda olduğu gibi, isim olarak herhangi bir kelimeyi seçebiliriz.

Mesela yukarıdaki fonksiyonda “deneme” adını seçmiştik.

• Sınıf örneğinde de “BirOrnek” adını kullandık.

• Tabii isim belirlerken Türkçe karakter kullanamıyoruz.

• Sınıf adlarını belirlerken kullanacağımız kelimenin büyük harf veya küçük harf

olması önemli değildir.

• Sınıf adı birden fazla kelimeden oluşuyorsa her kelimenin ilk harfi büyük

yazılır. Bu bir kural değildir, ama her zaman adetlere uymak yerinde bir

davranış olacaktır.

 class BirOrnek:

 mesele = "Olmak ya da olmamak"

Sınıf Çalıştırmak

• Normalde sınıflar bundan biraz daha karmaşıktır

• Herhangi bir Python programını nasıl çalıştırıyorsak sınıfları da öyle

çalıştırabiliriz. Python’u başlattıktan sonra bütün platformlarda şu komutu

vererek bu kod parçasını çalıştırılabilir duruma getirebiliriz:

• from Bir import *

• Burada sizin bu kodları “Bir.py” adlı bir dosyaya kaydettiniz. Dolayısıyla bu

şekilde dosyamızı bir modül olarak içe aktarabiliyoruz (import).

• Artık sınıfımızı çalıştırmamızın önünde hiç bir engel kalmadı sayılır. Bu

noktada yapmamız gereken tek bir işlem var: Örnekleme

Örnekleme (Instantiation)

• Şimdi şöyle bir şey yazıyoruz:

• deneme = BirOrnek()

• Böylece oluşturduğumuz sınıfı bir değişkene atadık.

• NTP kavramlarıyla “sınıfımızı örneklemiş olduk”.

• İngilizce’de “instantiation” olarak ifade edilen “örnekleme” kavramı sayesinde sınıfımızı

kullanırken belli bir kolaylık sağlamış oluyoruz.

• Örnekleme (instantiation) aslında şekil olarak yalnızca bir değişken atama işleminden

ibarettir. Bu örneklemelerin her birine ise örnek (instance) deniyor. “BirÖrnek” adlı sınıfa bir

isim verme işlemine örnekleme denirken, bu işlem sonucu ortaya çıkan değişkene de, örnek

(instance) diyoruz. Buna göre, burada “deneme” adlı değişken, “BirOrnek” adlı sınıfın bir

örneğidir. Daha soyut bir ifadeyle, örnekleme işlemi “Class” (sınıf) nesnesini etkinleştirmeye

yarar. Yani sınıfın bütününü alır ve onu paketleyip, istediğimiz şekilde kullanabileceğimiz bir

nesne haline getirir.

Çöp Toplama (Garbage Collection)

• Eğer bir sınıfı örneklemezsek, o örneklenmeyen sınıf program tarafından otomatik olarak

çöp toplama (garbage collection) adı verilen bir sürece tabi tutulacaktır.

• Python’da (ve bir çok programlama dilinde) yazdığımız programlar içindeki işe yaramayan

veriler bellekten silinir. Böylece etkili bir hafıza yönetimi uygulanmış ve programların

performansı artırılmış olur.

• deneme = BirOrnek() Eğer parantezleri kullanmazsak, yani deneme = BirOrnek gibi bir şey

yazarsak, yaptığımız şey örnekleme olmaz. Böyle yaparak sınıfı sadece kopyalamış oluruz.

Bizim yapmak istediğimiz bu değil. O yüzden, “parantezlere dikkat!” diyoruz.

• Artık şu komut yardımıyla, sınıf örneğimizin niteliklerine ulaşabiliriz:

• deneme.mesele

 Olmak ya da olmamak

8

Objectives
• Yeni sınıfları tanımlamanın karmaşık bir program için nasıl yapı

sağlayabileceğini takdir etmek.

• Python sınıf tanımlarını okuyup yazabilme.

• Kapsülleme kavramını ve bunun modüler ve sürdürülebilir programlar
oluşturmaya nasıl katkıda bulunduğunu anlamak.

• Basit sınıf tanımları içeren programlar yazabilme.

• Yeni (programcı tarafından tasarlanmış) parçacıklar içeren etkileşimli grafik
programları yazabilme.

9

Quick Review of Objects

• In the last three chapters we’ve developed techniques for structuring the

computations of the program.

• We’ll now take a look at techniques for structuring the data that our programs

use.

• So far, our programs have made use of objects created from pre-defined class
such as Circle. In this chapter we’ll learn how to write our own classes to

create novel objects.

• An object was defined as an active data type that knows stuff and can do

stuff.

• More precisely, an object consists of:

1. A collection of related information.

2. A set of operations to manipulate that information.

10

Quick Review of Objects

• The information is stored inside the object in instance variables.

• The operations, called methods, are functions that “live” inside the object.

• Collectively, the instance variables and methods are called the attributes of an

object.

• A Circle object will have instance variables such as center, which

remembers the center point of the circle, and radius, which stores the length

of the circle’s radius.

• The draw method examines the center and radius to decide which pixels

in a window should be colored.

11

Quick Review of Objects
• The move method will change the value of center to reflect the new position

of the circle.

• All objects are said to be an instance of some class. The class of an object
determines which attributes the object will have.

• A class is a description of what its instances will know and do.

• New objects are created from a class by invoking a constructor. You can think

of the class itself as a sort of factory for stamping out new instances.

• Consider making a new circle object:
myCircle = Circle(Point(0,0),20)

• Circle, the name of the class, is used to invoke the constructor.

12

Quick Review of Objects
myCircle = Circle(Point(0,0), 20)

• This statement creates a new Circle instance

and stores a reference to it in the variable
myCircle.

• The parameters to the constructor are used to

initialize some of the instance variables
(center and radius) inside myCircle.

13

Cannonball Program Specification
myCircle = Circle(Point(0,0), 20)

• Once the instance has been created, it can be manipulated by calling on its

methods:
myCircle.draw(win)

myCircle.move(dx,dy)

• Let’s try to write a program that simulates the flight of a cannonball or other

projectile.

• We’re interested in how far the cannonball will travel when fired at various

launch angles and initial velocities.

14

Cannonball Program Specification
• The input to the program will be the launch angle (in degrees), the initial

velocity (in meters per second), and the initial height (in meters) of the

cannonball.

• The output will be the distance that the projectile travels before striking the

ground (in meters).

• The acceleration of gravity near the earth’s surface is roughly 9.8 m/s/s.

• If an object is thrown straight up at 20 m/s, after one second it will be traveling

upwards at 10.2 m/s. After another second, its speed will be .4 m/s. Shortly

after that the object will start coming back down to earth.

15

Cannonball Program Specification
• Using calculus, we could derive a formula that gives the position of the

cannonball at any moment of its flight.

• However, we’ll solve this problem with simulation, a little geometry, and the
fact that the distance an object travels in a certain amount of time is equal to
its rate times the amount of time
(d = rt).

• Given the nature of the problem, it’s obvious we need to consider the flight of

the cannonball in two dimensions: it’s height and the distance it travels.

• Let’s think of the position of the cannonball as the point (x, y) where x is the

distance from the starting point and y is the height above the ground.

16

Designing the Program

• Suppose the ball starts at position (0,0), and we want to check its position

every tenth of a second.

• In that time interval it will have moved some distance upward (positive y) and

some distance forward (positive x). The exact distance will be determined by

the velocity in that direction.

• Since we are ignoring wind resistance, x will remain constant through the

flight.

• However, y will change over time due to gravity. The y velocity will start out

positive and then become negative as the ball starts to fall.

17

Designing the Program
• Input the simulation parameters: angle,

velocity, height, interval.

• Calculate the initial position of the

cannonball: xpos, ypos

• Calculate the initial velocities of the

cannonball: xvel, yvel

• While the cannonball is still flying:

– Update the values of xpos, ypos, and yvel for

interval seconds further into the flight

• Output the distance traveled as xpos

18

Designing the Program

• Using step-wise refinement:
def main():

 angle = eval(input("Enter the launch angle (in degrees): "))

 vel = eval(input("Enter the initial velocity (in meters/sec):

"))

 h0 = eval(input("Enter the initial height (in meters): "))

 time = eval(input("Enter the time interval between position

calculations: "))

• Calculating the initial position for the cannonball is also easy. It’s at distance 0 and height
h0!

 xpos = 0

 ypos = h0

19

Designing the Program

• If we know the magnitude of the velocity and the angle

theta, we can calculate
yvel=velocity*sin(theta)and

xvel=velocity*cos(theta).

20

Designing the Program

• Our input angle is in degrees, and the Python math
library uses radians, so theta = (*angle)/180.

• theta = (angle * pi)/180.0

xvel = vel * cos(theta)

yvel = vel * sin(theta)

• In the main loop, we want to keep updating the position
of the ball until it reaches the ground:
while ypos >= 0.0:

• We used >= 0 so the loop will start if the ball starts out
on the ground.

21

Designing the Program

• Each time through the loop we want to update the
state of the cannonball to move it time seconds
farther.

• Since we assume there is no wind resistance, xvel
remains constant.

• Say a ball is traveling at 30 m/s and is 50 m from the
firing point. In one second it will be 50 + 30 meters
away. If the time increment is .1 second it will be 50 +
30*.1 = 53 meters.

• xpos = xpos + time * xvel

22

Designing the Program

• Working with yvel is slightly more complicated
since gravity causes the y-velocity to change
over time.

• Each second, yvel must decrease by 9.8 m/s,
the acceleration due to gravity.

• In 0.1 seconds the velocity will be 0.1(9.8) = .98
m/s.

• yvel1 = yvel - 9.8 * time

23

Designing the Programs

• To calculate how far the cannonball travels over the

interval, we need to calculate its average vertical

velocity over the interval.

• Since the velocity due to gravity is constant, it is simply

the average of the starting and ending velocities times

the length of the interval:
 ypos = ypos + time * (yvel + yvel1)/2.0

24

Designing Programs
cball1.py

Simulation of the flight of a cannon ball (or other projectile)

This version is not modularized.

from math import pi, sin, cos

def main():

 angle = eval(input("Enter the launch angle (in degrees): "))

 vel = eval(input("Enter the initial velocity (in meters/sec): "))

 h0 = eval(input("Enter the initial height (in meters): "))

 time = eval(input("Enter the time interval between position calculations: "))

 radians = (angle * pi)/180.0

 xpos = 0

 ypos = h0

 xvel = vel * cos(radians)

 yvel = vel * sin(radians)

 while ypos >= 0:

 xpos = xpos + time * xvel

 yvel1 = yvel - 9.8 * time

 ypos = ypos + time * (yvel + yvel1)/2.0

 yvel = yvel1

 print("\nDistance traveled: {0:0.1f} meters." .format(xpos)

main()

25

Modularizing the Program

• During program development, we employed

step-wise refinement (and top-down design),

but did not divide the program into functions.

• While this program is fairly short, it is complex

due to the number of variables.

26

Modularizing the Program
def main():

 angle, vel, h0, time = getInputs()

 xpos, ypos = 0, h0

 xvel, yvel = getXYComponents(vel, angle)

 while ypos >= 0:

 xpos, ypos, yvel = updateCannonBall(time, xpos, ypos, xvel, yvel)

 print("\nDistance traveled: {0:0.1f} meters.".format(xpos)

• It should be obvious what each of these helper

functions does based on their name and the

original program code.

27

Modularizing the Program

• This version of the program is more concise!

• The number of variables has been reduced from 10 to 8, since theta and

yvel1 are local to getXYComponents and updateCannonBall,

respectively.

• This may be simpler, but keeping track of the cannonball still requires four

pieces of information, three of which change from moment to moment!

• All four variables, plus time, are needed to compute the new values of the

three that change.

• This gives us a function with five parameters and three return values.

• Yuck! There must be a better way!

28

Modularizing the Program
• There is a single real-world cannonball object, but it requires four pieces of

information: xpos, ypos, xvel,x and yvel.

• Suppose there was a Projectile class that “understood” the physics of

objects like cannonballs. An algorithm using this approach would create and

update an object stored in a single variable.

29

Modularizing the Program
• Using our object-based approach:

def main():

 angle, vel, h0, time = getInputs()

 cball = Projectile(angle, vel, h0)

 while cball.getY() >= 0:

 cball.update(time)

 print("\nDistance traveled: {0:0.1f}

meters.".format(cball.getX()))

main()

• To make this work we need a Projectile class that implements the methods

update, getX, and getY.

30

Example: Multi-Sided Dice
• A normal die (singular of dice) is a cube with six faces, each with a number

from one to six.

• Some games use special dice with a different number of sides.

• Let’s design a generic class MSDie to model multi-sided dice.

• Each MSDie object will know two things:

– How many sides it has.

– It’s current value

• When a new MSDie is created, we specify n, the number of sides it will have.

31

Example: Multi-Sided Dice

• We have three methods that we can use to

operate on the die:

– roll – set the die to a random value between 1 and

n, inclusive.

– setValue – set the die to a specific value (i.e.

cheat)

– getValue – see what the current value is.

32

Example: Multi-Sided Dice
>>> die1 = MSDie(6)

>>> die1.getValue()

1

>>> die1.roll()

>>> die1.getValue()

5

>>> die2 = MSDie(13)

>>> die2.getValue()

1

>>> die2.roll()

>>> die2.getValue()

9

>>> die2.setValue(8)

>>> die2.getValue()

8

33

Example: Multi-Sided Dice
• Using our object-oriented vocabulary, we create a die by

invoking the MSDie constructor and providing the number of
sides as a parameter.

• Our die objects will keep track of this number internally as an
instance variable.

• Another instance variable is used to keep the current value of
the die.

• We initially set the value of the die to be 1 because that value is
valid for any die.

• That value can be changed by the roll and setRoll methods,
and returned by the getValue method.

34

Example: Multi-Sided Dice
msdie.py

Class definition for an n-sided die.

from random import randrange

class MSDie:

 def __init__(self, sides):

 self.sides = sides

 self.value = 1

 def roll(self):

 self.value = randrange(1, self.sides+1)

 def getValue(self):

 return self.value

 def setValue(self, value):

 self.value = value

35

Example: Multi-Sided Dice

• Class definitions have the form
class <class-name>:

 <method-definitions>

• Methods look a lot like functions! Placing the function

inside a class makes it a method of the class, rather

than a stand-alone function.

• The first parameter of a method is always named
self, which is a reference to the object on which the

method is acting.

36

Example: Multi-Sided Dice
• Suppose we have a main function that executes die1.setValue(8).

• Just as in function calls, Python executes the following four-step sequence:

– main suspends at the point of the method application. Python locates the
appropriate method definition inside the class of the object to which the
method is being applied. Here, control is transferred to the setValue
method in the MSDie class, since die1 is an instance of MSDie.

– The formal parameters of the method get assigned the values supplied by

the actual parameters of the call. In the case of a method call, the first

formal parameter refers to the object:
self = die1

value = 8

– The body of the method is executed.

37

Example: Multi-Sided Dice
– Control returns to the point just after where the method was called. In this

case, it is immediately following die1.setValue(8).

• Methods are called with one parameter, but the method definition itself
includes the self parameter as well as the actual parameter.

• The self parameter is a bookkeeping detail. We can refer to the first formal

parameter as the self parameter and other parameters as normal parameters.
So, we could say setValue uses one normal parameter.

38

Example: Multi-Sided Dice

• Objects contain their own data. Instance variables
provide storage locations inside of an object.

• Instance variables are accessed by name using our
dot notation: <object>.<instance-var>

• Looking at setValue, we see self.value refers to
the instance variable value inside the object. Each
MSDie object has its own value.

39

Example: Multi-Sided Dice

• Certain methods have special meaning. These

methods have names that start and end with

two _’s.

• __init__ is the object contructor. Python calls

this method to initialize a new MSDie.

__init__ provides initial values for the

instance variables of an object.

40

Example: Multi-Sided Dice
• Outside the class, the constructor is referred to by the class name:

die1 = MSDie(6)

• When this statement is executed, a new MSDie object is created and
__init__ is executed on that object.

• The net result is that die1.sides is set to 6 and die1.value is set to 1.

• Instance variables can remember the state of a particular object, and this

information can be passed around the program as part of the object.

• This is different than local function variables, whose values disappear when

the function terminates.

41

Example: The Projectile Class
• This class will need a constructor to initialize instance variables, an update

method to change the state of the projectile, and getX and getY methods that

can report the current position.

• In the main program, a cannonball can be created from the initial angle,

velocity, and height:
cball = Projectile(angle, vel, h0)

• The Projectile class must have an __init__ method that will use these

values to initialize the instance variables of cball.

• These values will be calculated using the same formulas as before.

42

Example: The Projectile Class
class Projectile:

 def __init__(self, angle, velocity, height):
 self.xpos = 0.0

 self.ypos = height

 theta = pi * angle / 180.0

 self.xvel = velocity * cos(theta)

 self.yvel = velocity * sin(theta)

• We’ve created four instance variables (self.???).
Since the value of theta is not needed later, it is a
normal function variable.

43

Example: The Projectile Class

• The methods to access the X and Y position

are straightforward.

 def getY(self):

 return self.ypos

 def getX(self):

 return self.xpos

44

Example: The Projectile Class

• The last method is update, where we’ll take

the time interval and calculate the update X and

Y values.

 def update(self, time):

 self.xpos = self.xpos + time * self.xvel

 yvel1 = self.yvel - 9.8 * time

 self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0

 self.yvel = yvel1

• yvel1 is a temporary variable.

45

Data Processing with Class
• A class is useful for modeling a real-world object with complex behavior.

• Another common use for objects is to group together a set of information that

describes a person or thing.

– Eg., a company needs to keep track of information about employees (an
Employee class with information such as employee’s name, social

security number, address, salary, etc.)

• Grouping information like this is often called a record.

• Let’s try a simple data processing example!

• A typical university measures courses in terms of credit hours, and grade point

averages are calculated on a 4 point scale where an “A” is 4 points, a “B” is

three, etc.

46

Data Processing with Class

• Grade point averages are generally computed

using quality points. If a class is worth 3 credit

hours and the student gets an “A”, then he or

she earns

3(4) = 12 quality points. To calculate the GPA,

we divide the total quality points by the number

of credit hours completed.

47

Data Processing with Class

• Suppose we have a data file that contains
student grade information.

• Each line of the file consists of a student’s
name, credit-hours, and quality points.
Adams, Henry 127 228

Comptewell, Susan 100 400

DibbleBit, Denny 18 41.5

Jones, Jim 48.5 155

Smith, Frank 37 125.33

48

Data Processing with Class

• Our job is to write a program that reads this file
to find the student with the best GPA and print
out their name, credit-hours, and GPA.

• The place to start? Creating a Student class!

• We can use a Student object to store this
information as instance variables.

49

Data Processing with Class
• class Student:

 def __init__(self, name, hours, qpoints):
 self.name = name
 self.hours = float(hours)
 self.qpoints = float(qpoints)

• The values for hours are converted to float to
handle parameters that may be floats, ints, or strings.

• To create a student record:
aStudent = Student(“Adams, Henry”, 127, 228)

• The coolest thing is that we can store all the
information about a student in a single variable!

50

Data Processing with Class
• We need to be able to access this information, so we need to

define a set of accessor methods.

• def getName(self):
 return self.name

 def getHours(self):
 return self.hours

 def getQPoints(self):
 return self.qpoints

 def gpa(self):
 return self.qpoints/self.hours

• For example, to print a student’s name you could write:
print aStudent.getName()

51

Data Processing with Class

• How can we use these tools to find the student

with the best GPA?

• We can use an algorithm similar to finding the

max of n numbers! We could look through the

list one by one, keeping track of the best

student seen so far!

52

Data Processing with Class
Get the file name from the user

Open the file for reading

Set best to be the first student

For each student s in the file

 if s.gpa() > best.gpa

 set best to s

Print out information about best

53

Data Processing with Class
gpa.py

Program to find student with highest GPA

class Student:

 def __init__(self, name, hours, qpoints):

 self.name = name

 self.hours = float(hours)

 self.qpoints = float(qpoints)

 def getName(self):

 return self.name

 def getHours(self):

 return self.hours

 def getQPoints(self):

 return self.qpoints

 def gpa(self):

 return self.qpoints/self.hours

def makeStudent(infoStr):

 name, hours, qpoints = infoStr.split("\t")

 return Student(name, hours, qpoints)

def main():

 filename = input("Enter name the grade file: ")

 infile = open(filename, 'r')

 best = makeStudent(infile.readline())

 for line in infile:

 s = makeStudent(line)

 if s.gpa() > best.gpa():

 best = s

 infile.close()

 print("The best student is:", best.getName())

 print ("hours:", best.getHours())

 print("GPA:", best.gpa())

if __name__ == '__main__':

 main()

54

Encapsulating Useful Abstractions
• Defining new classes (like Projectile and Student) can be a good way to

modularize a program.

• Once some useful objects are identified, the implementation details of the

algorithm can be moved into a suitable class definition.

• The main program only has to worry about what objects can do, not about how

they are implemented.

• In computer science, this separation of concerns is known as encapsulation.

• The implementation details of an object are encapsulated in the class

definition, which insulates the rest of the program from having to deal with

them.

55

Encapsulating Useful Abstractions

• One of the main reasons to use objects is to hide the internal complexities of

the objects from the programs that use them.

• From outside the class, all interaction with an object can be done using the

interface provided by its methods.

• One advantage of this approach is that it allows us to update and improve

classes independently without worrying about “breaking” other parts of the

program, provided that the interface provided by the methods does not

change.

56

Putting Classes in Modules

• Sometimes we may program a class that could

useful in many other programs.

• If you might be reusing the code again, put it into

its own module file with documentation to describe

how the class can be used so that you won’t have

to try to figure it out in the future from looking at the

code!

57

Module Documentation

• You are already familiar with “#” to indicate

comments explaining what’s going on in a Python

file.

• Python also has a special kind of commenting

convention called the docstring. You can insert a

plain string literal as the first line of a module,

class, or function to document that component.

58

Module Documentation

• Why use a docstring?

– Ordinary comments are ignored by Python

– Docstrings are accessible in a special attribute called
__doc__.

• Most Python library modules have extensive

docstrings. For example, if you can’t remember how to
use random:
>>> import random

>>> print random.random.__doc__

random() -> x in the interval [0, 1).

59

Module Documentation

• Docstrings are also used by the Python online help

system and by a utility called PyDoc that automatically

builds documentation for Python modules. You could

get the same information like this:
>>> import random

>>> help(random.random)

Help on built-in function random:

random(...)

 random() -> x in the interval [0, 1).

60

Module Documentation

• To see the documentation for an entire module,
try typing help(module_name)!

• The following code for the projectile class has

docstrings.

61

Module Documentation
projectile.py

"""projectile.py

Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos

class Projectile:

 """Simulates the flight of simple projectiles near the earth's

 surface, ignoring wind resistance. Tracking is done in two

 dimensions, height (y) and distance (x)."""

 def __init__(self, angle, velocity, height):

 """Create a projectile with given launch angle, initial

 velocity and height."""

 self.xpos = 0.0

 self.ypos = height

 theta = pi * angle / 180.0

 self.xvel = velocity * cos(theta)

 self.yvel = velocity * sin(theta)

62

Module Documentation
 def update(self, time):

 """Update the state of this projectile to move it time seconds

 farther into its flight"""

 self.xpos = self.xpos + time * self.xvel

 yvel1 = self.yvel - 9.8 * time

 self.ypos = self.ypos + time * (self.yvel + yvel1) / 2.0

 self.yvel = yvel1

 def getY(self):

 "Returns the y position (height) of this projectile."

 return self.ypos

 def getX(self):

 "Returns the x position (distance) of this projectile."

 return self.xpos

63

Working with Multiple Modules
• Our main program can import from the projectile module in order

to solve the original problem!

cball4.py
Simulation of the flight of a cannon ball (or other projectile)
This version uses a separate projectile module file

from projectile import Projectile

def getInputs():
 a = eval(input("Enter the launch angle (in degrees): "))
 v = eval(input("Enter the initial velocity (in meters/sec): "))

 h = eval(input("Enter the initial height (in meters): "))
 t = eval(input("Enter the time interval between position calculations: "))
 return a,v,h,t

def main():
 angle, vel, h0, time = getInputs()
 cball = Projectile(angle, vel, h0)
 while cball.getY() >= 0:
 cball.update(time)
 print("\nDistance traveled: {0:0.1f} meters.".format(cball.getX())

64

Working with Multiple Modules
• If you are testing a multi-module Python program, you need to be aware that

reloading a module may not behave as you expect.

• When Python first imports a given module, it creates a module object that
contains all the things defined in the module (a namespace). If a module
imports successfully (no syntax errors), subsequent imports do not reload the
module. Even if the source code for the module has been changed, re-
importing it into an interactive session will not load the updated version.

• The easiest way – start a new interactive session for testing whenever any of
the modules involved in your testing are modified. This way you’re guaranteed
to get a more recent import of all the modules you’re using.

65

Widgets

• One very common use of objects is in the design of

graphical user interfaces (GUIs).

• Back in chapter 5 we talked about GUIs being

composed of visual interface objects known as

widgets.

• The Entry object defined in our graphics library

is one example of a widget.

66

Example Program: Dice Roller

• Let’s build a couple useful widgets!

• Consider a program that rolls a pair of six-sided

dice.

• The program will display the dice graphically

and provide two buttons, one for rolling the dice

and one for quitting the program.

67

Example Program: Dice Roller

• There are two kinds of

widgets: buttons and

dice.

• The two buttons will be
examples of the Button

class, while the dice

images will be provided
by dieView.

68

Building Buttons
• Most modern GUIs have buttons with 3-dimensional look and feel. Our simple

graphics package does not have the machinery to produce buttons that

appear to depress as they are clicked.

• All we can do is report back where the mouse was clicked after the click has

been completed.

• Our buttons will be rectangular regions in a graphics window where user clicks

can influence the behavior of the running application.

• We need a way to determine whether a button has been clicked.

• It would be nice to be able to activate and deactivate (gray-out) individual

buttons.

69

Building Buttons
• Constructor – Create a button in a window. We will specify the window,

location/size of the button, and the label on the button.

• Activate – Set the state of the button to active.

• Deactivate – Set the state of the button to inactive.

• Clicked– Indicate if the button was clicked. If the button is active, this method

will determine if the point clicked is inside the button region. The point will have

to be sent as a parameter to the method.

• getLabel– Returns the label string of a button. This is provided so that we can

identify a particular button.

70

Building Buttons
• To support these operations, our buttons will need a number of instance

variables.

• For example, buttons are drawn as a rectangle with some text centered on it.
Invoking the activate and deactivate methods will change the

appearance of the buttons.

• Saving the Rectangle and Text objects as instance variables means we will

be able to control the width of the outline and color of the label.

• Let’s try writing these methods and build up a list of possible instance

variables! Once we have the list, we can write the constructor to initialize them.

71

Building Buttons
• In activate, we can signal a button is active by making its

outline thicker and making the label text black.
• def activate(self):

 "Sets this button to 'active'. "
 self.label.setFill('black')
 self.rect.setWidth(2)
 self.active = True

• Remember, self refers to the button object.

• Our constructor will have to initialize self.label as an
appropriate Text object and self.rect as a rectangle object.

• Self.active also has a Boolean instance variable to
remember whether or not the button is currently inactive.

72

Building Buttons

• The code for deactivate is very similar:
 def deactivate(self):

 "Sets this button to 'inactive'."

 self.label.setFill('darkgrey')

 self.rect.setWidth(1)

 self.active = 0

• Let’s work on the clicked method.

• The graphics package has the getMouse method to see if and where the
mouse has been clicked.

• If an application needs to get a button click, it will have to first call getMouse
and then see which button, if any, the point is inside of.

73

Building Buttons
pt = win.getMouse()

if button1.clicked(pt):

Do button1 stuff

elif button2.clicked(pt):

Do button2 stuff

elif button3.clicked(pt):

Do button3 stuff

…

• The main job of the clicked method is to determine whether a given point is
inside the rectangular button.

• The point is inside the button if its x and y coordinates lie between the extreme

x and y values of the rectangle.

• This would be easiest if the button object had the min and max values of x and

y as instance variables.

74

Building Buttons
• def clicked(self, p):

 "RETURNS true if button active and p is inside“

 return self.active and \

 self.xmin <= p.getX() <= self.xmax and \

 self.ymin <= p.getY() <= self.ymax

• For this function to return True, all three parts of the
Boolean expression must be true.

• The first part ensures that only active buttons will
return that they have been clicked.

• The second and third parts ensure that the x and y
values of the point that was clicked fall between the
boundaries of the rectangle.

75

Building Buttons
• The only part that is left is to write the constructor:
 def __init__(self, win, center, width, height, label):

 """ Creates a rectangular button, eg:

 qb = Button(myWin, Point(30,25), 20, 10, 'Quit') """

 w,h = width/2.0, height/2.0

 x,y = center.getX(), center.getY()

 self.xmax, self.xmin = x+w, x-w

 self.ymax, self.ymin = y+h, y-h

 p1 = Point(self.xmin, self.ymin)

 p2 = Point(self.xmax, self.ymax)

 self.rect = Rectangle(p1,p2)

 self.rect.setFill('lightgray')

 self.rect.draw(win)

 self.label = Text(center, label)

 self.label.draw(win)

 self.deactivate()

• Buttons are positioned by providing a center point,
width, and height.

