Python Programming

Kutuphaneler

NTP — Nesne Tabanli Programlama

 NTP'yi ogrendiginizde Python Programlama’da
bir anlamda "boyut atlamis” olacaksiniz.

» Python'a iliskin okudugunuz seyler zihninizde
daha anlamli izler birakmaya baslayacaktir.

Siniflar

NTP’de en onemli kavram siniflardir.
Zaten NTP denince ilk akla gelen sey de genellikle siniflar olmaktadir.
Siniflar yapi olarak fonksiyonlara benzetilebilir.

Fonksiyonlar yardimiyla farkli degiskenleri ve veri tiplerini, tekrar kullaniimak
Uzere bir yerde toplayabiliyorduk.

Siniflar yardimiyla da farkli fonksiyonlari, veri tiplerini, degiskenleri, metotlar
gruplandirabiliyoruz.

Fonksiyonlari tanimlarken def parcacigindan yararlaniyorduk. def deneme():
Siniflari tanimlarken ise class pargacigindan faydalaniyoruz: class BirOrnek:

Sinif Tanimlamak

Tipki fonksiyonlarda oldugu gibi, isim olarak herhangi bir kelimeyi secebiliriz.
Mesela yukaridaki fonksiyonda “deneme” adini secmistik.

Sinif orneginde de “BirOrnek” adini kullandik.
Tabii isim belirlerken Turkge karakter kullanamiyoruz.

Sinif adlarini belirlerken kullanacagimiz kelimenin buyuk harf veya kuguk harf
olmasi onemli degildir.

Sinif adi birden fazla kelimeden olusuyorsa her kelimenin ilk harfi buyuk
yazilir. Bu bir kural degildir, ama her zaman adetlere uymak yerinde bir
davranis olacaktir.

class BirOrnek:
mesele = "Olmak ya da olmamak"

Sinif Calistirmak

Normalde siniflar bundan biraz daha karmasiktir

Herhangi bir Python programini nasil galistiriyorsak siniflari da oyle
calistirabiliriz. Python’u baslattiktan sonra butun platformlarda su komutu
vererek bu kod parcasini ¢alistirilabilir duruma getirebiliriz:

from Bir import *

Burada sizin bu kodlari “Bir.py” adli bir dosyaya kaydettiniz. Dolayisiyla bu
sekilde dosyamizi bir modUl olarak ice aktarabiliyoruz (import).

Artik sinifimizi calistirmamizin énunde hig bir engel kalmadi sayilir. Bu
noktada yapmamiz gereken tek bir islem var: Ornekleme

Ornekleme (Instantiation)

Simdi soyle bir sey yaziyoruz:

deneme = BirOrnek()

Boylece olusturdugumuz sinifi bir degiskene atadik.
NTP kavramlariyla “sinifimizi érneklemis olduk”.

Ingilizce’de “instantiation” olarak ifade edilen “6rnekleme” kavrami sayesinde sinifimizi
kullanirken belli bir kolaylik saglamis oluyoruz.

Ornekleme (instantiation) aslinda sekil olarak yalnizca bir degisken atama isleminden
ibarettir. Bu 6rneklemelerin her birine ise 6rnek (instance) deniyor. “BirOrnek” adl sinifa bir
Isim verme islemine ornekleme denirken, bu islem sonucu ortaya ¢ikan degiskene de, ornek
(instance) diyoruz. Buna gore, burada “deneme” adli degisken, “BirOrnek” adli sinifin bir
ornegidir. Daha soyut bir ifadeyle, ornekleme iglemi “Class” (sinif) nesnesini etkinlestirmeye
yarar. Yani sinifin butununu alir ve onu paketleyip, istedigimiz sekilde kullanabilecegimiz bir
nesne haline getirir.

COp Toplama (Garbage Collection)

Eger bir sinifi orneklemezsek, o orneklenmeyen sinif program tarafindan otomatik olarak
cop toplama (garbage collection) adi verilen bir surece tabi tutulacaktir.

Python’da (ve bir cok programlama dilinde) yazdigimiz programlar igindeki ise yaramayan
veriler bellekten silinir. Boylece etkili bir hafiza yonetimi uygulanmis ve programlarin
performansi artiriimis olur.

deneme = BirOrnek() Eger parantezleri kullanmazsak, yani deneme = BirOrnek gibi bir sey
yazarsak, yaptigimiz sey ornekleme olmaz. Boyle yaparak sinifi sadece kopyalamis oluruz.
Bizim yapmak istedigimiz bu degil. O yuzden, “parantezlere dikkat!” diyoruz.

Artik su komut yardimiyla, sinif 6rnegimizin niteliklerine ulasabiliriz:
deneme.mesele
Olmak ya da olmamak

Objectives

Yeni siniflari tanimlamanin karmasik bir program icin nasil yap!
saglayabilecegini takdir etmek.

Python sinif tanimlarini okuyup yazabilme.

Kapsulleme kavramini ve bunun moduler ve surdurulebilir programlar
olusturmaya nasil katkida bulundugunu anlamak.

Basit sinif tanimlari iceren programlar yazabilme.

Yeni (programci tarafindan tasarlanmis) parcaciklar iceren etkilesimli grafik
programiari yazabilme.

Quick Review of Objects

In the last three chapters we’ve developed techniques for structuring the
computations of the program.

We’ll now take a look at techniques for structuring the data that our programs
use.

So far, our programs have made use of objects created from pre-defined class
such as Circle. In this chapter we’ll learn how to write our own classes to

create novel objects.

An object was defined as an active data type that knows stuff and can do
stuff.

More precisely, an object consists of:
1. A collection of related information.
2. A set of operations to manipulate that information.

Quick Review of Objects

The information is stored inside the object in instance variables.
The operations, called methods, are functions that “live” inside the object.

Collectively, the instance variables and methods are called the attributes of an
object.

A Circle object will have instance variables such as center, which
remembers the center point of the circle, and radius, which stores the length
of the circle’s radius.

The draw method examines the center and radius to decide which pixels
In a window should be colored.

10

Quick Review of Objects

The move method will change the value of center to reflect the new position
of the circle.

All objects are said to be an instance of some class. The class of an object
determines which attributes the object will have.

A class is a description of what its instances will know and do.

New objects are created from a class by invoking a constructor. You can think
of the class itself as a sort of factory for stamping out new instances.

Consider making a new circle object:
myCircle = Circle (Point (0,0),20)

Circle, the name of the class, Is used to invoke the constructor.

11

Quick Review of Objects

myCircle = Circle (Point (0,0), 20)
 This statement creates a nhew Circle Instance

and stores a reference to It in the variable
myCircle.

* The parameters to the constructor are used to

Initialize some of the Instance variables
(center and radius) Inside myCircle.

12

Cannonball Program Specification

myCircle = Circle (Point(0,0), 20)

* Once the instance has been created, it can be manipulated by calling on its
methods:
myCircle.draw(win)

myClrcle.move (dx, dy)

« Let’s try to write a program that simulates the flight of a cannonball or other
projectile.

« We’re interested in how far the cannonball will travel when fired at various
launch angles and initial velocities.

13

Cannonball Program Specification

The input to the program will be the launch angle (in degrees), the initial
velocity (in meters per second), and the initial height (in meters) of the
cannonball.

The output will be the distance that the projectile travels before striking the
ground (in meters).

The acceleration of gravity near the earth’s surface is roughly 9.8 m/s/s.

If an object is thrown straight up at 20 m/s, after one second it will be traveling
upwards at 10.2 m/s. After another second, its speed will be .4 m/s. Shortly
after that the object will start coming back down to earth.

14

Cannonball Program Specification

Using calculus, we could derive a formula that gives the position of the
cannonball at any moment of its flight.

However, we’ll solve this problem with simulation, a little geometry, and the
fact that the distance an object travels in a certain amount of time is equal to
Its rate times the amount of time

(d = rt).

Given the nature of the problem, it’s obvious we need to consider the flight of
the cannonball in two dimensions: it’s height and the distance it travels.

Let’s think of the position of the cannonball as the point (X, y) where x is the
distance from the starting point and y is the height above the ground.

15

Designing the Program

Suppose the ball starts at position (0,0), and we want to check its position
every tenth of a second.

In that time interval it will have moved some distance upward (positive y) and
some distance forward (positive x). The exact distance will be determined by
the velocity In that direction.

Since we are ignoring wind resistance, x will remain constant through the
flight.

However, y will change over time due to gravity. The y velocity will start out
positive and then become negative as the ball starts to fall.

16

Designing the Program

Input the simulation parameters: angle,
velocity, height, 1nterval.

Calculate the 1nitial position of the
cannonball: xpos, ypos

Calculate the 1nitial velocities of the
cannonball: xvel, yvel

While the cannonball 1s still flying:

— Update the values of xpos, ypos, and yvel for
interval seconds further 1nto the flight

Output the distance traveled as xpos

17

Designing the Program

Using step-wise refinement:
def main () :

angle = eval (input ("Enter the launch angle (i1n degrees): "))

vel = eval (input ("Enter the initial velocity (in meters/sec):
ll))

h0 = eval (1nput ("Enter the initial height (in meters): "))

time = eval (input ("Enter the time interval between position
calculations: "))

Calculating the initial position for the cannonball is also easy. It's at distance 0 and height
hO!

xpos = 0
ypos = hO

18

Designing the Program

|

x |
g | yrwel = velocity

|

~—") theta

avel = velocitgr * cosi{theta)

sin [theta)

* |If we know the magnitude of the velocity and the angle
theta, we can calculate

yvel
xvel

=ve._

=vel

locity*sin (theta)and
oclty*cos (theta).

19

Designing the Program

* Our input angle Is In degrees, and the Python math
library uses radians, so theta = (n*angle) /180.

e theta = (angle * pi)/180.0

xvel vel * cos (theta)
yvel vel * sin(theta)

In the main loop, we want to keep updating the position

of the ball until it reaches the ground.
while ypos >= 0.0:

We used >= 0 so the loop will start if the ball starts out
on the ground.

20

Designing the Program

* Each time through the loop we want to update the
state of the cannonball to move It £t ime seconds

farther.

 Since we assume there I1s no wind resistance, xvel
remains constant.

« Say a ball is traveling at 30 m/s and is 50 m from the
firing point. In one second it will be 50 + 30 meters
away. If the time increment Is .1 second it will be 50 +
30*.1 = 53 meters.

e XPOS = Xpos + time * xvel

21

Designing the Program

» Working with yvel is slightly more complicated

since gravity causes the y-velocity to change
over time.

 Each second, yvel must decrease by 9.8 m/s,
the acceleration due to gravity.

* In 0.1 seconds the velocity will be 0.1(9.8) = .98
m/s.

e yvell = yvel - 9.8 * time

22

Designing the Programs

* To calculate how far the cannonball travels over the
Interval, we need to calculate its average vertical
velocity over the interval.

* Since the velocity due to gravity Is constant, it is simply
the average of the starting and ending velocities times

the length of the interval:
ypos = ypos + time * (yvel + yvell) /2.0

23

Designing Programs

cballl.py
Simulation of the flight of a cannon ball (or other projectile)
This version is not modularized.

from math import pi, sin, cos

def main () :

angle = eval (input ("Enter the launch angle (in degrees): "))

vel = eval (input ("Enter the initial velocity (in meters/sec): "))

hO = eval (input ("Enter the initial height (in meters): "))

time = eval (input ("Enter the time interval between position calculations: "))
radians = (angle * pi)/180.0

xpos = 0

ypos = h0

xvel = vel * cos(radians)

yvel = vel * sin(radians)

while ypos >= O0:
Xpos = xpos + time * xvel
yvell = yvel - 9.8 * time
ypos = ypos + time * (yvel + yvell) /2.0
yvel = yvell

print ("\nDistance traveled: {0:0.1f} meters." .format (xpos)

main ()

Modularizing the Program

* During program development, we employed
step-wise refinement (and top-down design),
but did not divide the program into functions.

* While this program Is fairly short, it Is complex
due to the number of variables.

25

Modularizing the Program

def main () :
angle, vel, h(0, time = getInputs/()
xpos, ypos = 0, hO

xvel, yvel = getXYComponents (vel, angle)
while ypos >= 0:

Xpos, ypos, yvel = updateCannonBall (time, xpos, ypos, xvel, yvel)
print ("\nDistance traveled: {0:0.1f} meters.".format (xpos)

* It should be obvious what each of these helper
functions does based on their name and the

original program code.

26

Modularizing the Program

This version of the program is more concise!

The number of variables has been reduced from 10 to 8, since theta and
yvell are local to getXYComponents and updateCannonBall,

respectively.

This may be simpler, but keeping track of the cannonball still requires four
pieces of information, three of which change from moment to moment!

All four variables, plus time, are needed to compute the new values of the
three that change.

This gives us a function with five parameters and three return values.
Yuck! There must be a better way!

27

Modularizing the Program

There Is a single real-world cannonball object, but it requires four pieces of
Information: xpos, ypos, xvel,X and yvel.

Suppose there was a Projectile class that “understood” the physics of

objects like cannonballs. An algorithm using this approach would create and
update an object stored in a single variable.

28

Modularizing the Program

« Using our object-based approach:
def main () :

angle, vel, hO, time = getlInputs/()
cball = Projectile (angle, vel, hO)
while cball.getY () >= O0:
cball.update (time)
print ("\nDistance traveled: {0:0.1f}
meters.".format (cball.getX()))
maln ()

 To make this work we need a Projectile class that implements the methods
update, getX, and getY.

29

Example: Multi-Sided Dice

A normal die (singular of dice) Is a cube with six faces, each with a number
from one to six.

Some games use special dice with a different number of sides.

Let’
Eac

s design a generic class MSDie to model multi-sided dice.
N MSDie object will know two things:

How many sides it has.

When a new MSDie IS created, we specify n, the number of sides it will have.

t’s current value

30

Example: Multi-Sided Dice

« \WWe have three methods that we can use to
operate on the die:

—roll — set the die to a random value between 1 and
n, inclusive.

— setValue — set the die to a specific value (i.e.
cheat)

- getValue — see what the current value Is.

31

Example

>>> diel = MSDie(6)
>>> diel.getValue()
1

>>> diel.roll()

>>> diel.getValue()
5

>>> die2 = MSDie(13)
>>> die2.getValue()
1

>>> die2.roll()

>>> die2.getValue()
9

>>> die2.setValue(8)
>>> die2.getValue()
8

- Multi-Sided Dice

32

Example: Multi-Sided Dice

Using our object-oriented vocabulary, we create a die by
iInvoking the MSDie constructor and providing the number of

sides as a parameter.

Our die objects will keep track of this number internally as an
iInstance variable.

Another instance variable is used to keep the current value of
the die.

We Initially set the value of the die to be 1 because that value Is
valid for any die.

That value can be changed by the rol1l and setRol1 methods,
and returned by the getvalue method.

33

Example: Multi-Sided Dice

msdie.py
i Class definition for an n-sided die.

from random import randrange

class MSDie:

def init (self, sides):
self.sides = sides
self.value =1

def roll (self):
self.value = randrange(l, self.sides+1l)

def getValue(self):
return self.value

def setValue(self, wvalue):
self.value = value

Example: Multi-Sided Dice

 Class definitions have the form

class <class—name>:
<method-definitions>

* Methods look a lot like functions! Placing the function
Inside a class makes it a method of the class, rather

than a stand-alone function.

* The first parameter of a method Is always named
self, which is a reference to the object on which the

method Is acting.

35

Example: Multi-Sided Dice

 Suppose we have a main function that executes diel.setValue (8).

« Just as In function calls, Python executes the following four-step sequence:

— main suspends at the point of the method application. Python locates the

appropriate method definition inside the class of the object to which the
method Is being applied. Here, control is transferred to the setvalue
method in the MSDie class, since diel Is an instance of MSDie.

— The formal parameters of the method get assigned the values supplied by
the actual parameters of the call. In the case of a method call, the first

formal parameter refers to the object:
self = diel

value = 8

— The body of the method Is executed.

36

Example: Multi-Sided Dice

— Control returns to the point just after where the method was called. In this
case, it Is Immediately following diel.setValue (8).

 Methods are called with one parameter, but the method definition itself
Includes the self parameter as well as the actual parameter.

« The self parameter is a bookkeeping detail. We can refer to the first formal

parameter as the self parameter and other parameters as normal parameters.
So, we could say setValue uses one normal parameter.

—class MSDi1ie -

A=t mainfl :
diel = MSDie (1L 2]
diel . saetWValuo=e[2)

print diel .getWValun g[?

def setValype [(self,~ralu=)
-'lsel:E cwralye = sraluae

sElf=difl; value=—3

37

Example: Multi-Sided Dice

* Objects contain their own data. Instance variables
provide storage locations inside of an object.

* |nstance variables are accessed by name using our
dot notation: <object>.<instance-var>

* Looking at setValue, we see self.value refersto
the instance variable value Inside the object. Each
MSDie object has its own value.

38

Example: Multi-Sided Dice

» Certaln methods have special meaning. These
methods have names that start and end with
two ’S.

« 1nit Isthe object contructor. Python calls
this method to initialize a new MSDie.
- init provides initial values for the
instance variables of an object.

39

Example: Multi-Sided Dice

Outside the class, the constructor is referred to by the class name:
diel = MSDie (0)

When this statement is executed, a new MSDie object is created and
init IS executed on that object.

ﬁe net resultiIs that diel.sidesissetto 6 and diel.valuels setto 1.

Instance variables can remember the state of a particular object, and this
Information can be passed around the program as part of the object.

This is different than local function variables, whose values disappear when
the function terminates.

40

Example: The Projectile Class

This class will need a constructor to initialize instance variables, an update
method to change the state of the projectile, and getX and getY methods that

can report the current position.

In the main program, a cannonball can be created from the Initial angle,
velocity, and height:
cball = Projectile (angle, wvel, hO)

The Projectile class musthavean init method that will use these
values to Initialize the instance variables of cball.

These values will be calculated using the same formulas as before.

41

Example: The Projectile Class

class Projectile:

def 1init (self, angle, velocity, height):
self.xpos = 0.0

self.ypos = height

theta = pi * angle / 180.0
self.xvel velocity * cos(theta)
self.yvel velocity * sin(theta)

» We've created four instance variables (self.???).
Since the value of theta Is not needed later, it Is a
normal function variable.

42

Example: The Projectile Class

* The methods to access the X and Y position
are straightforward.

def getY (self) :

return self.ypos

def getX(self):

return self.xpos

43

Example: The Projectile Class

* The last method Is update, where we’ll take

the time Interval and calculate the update X and
Y values.

def update(self, time):
self.xpos = self.xpos + time * self.xvel
yvell = self.yvel - 9.8 * time
self.ypos = self.ypos + time * (self.yvel + yvell) / 2.0
self.yvel = yvell

e yvell IS a temporary variable.

44

Data Processing with Class

A class Is useful for modeling a real-world object with complex behavior.

Another common use for objects Is to group together a set of information that
describes a person or thing.

— Eg., a company needs to keep track of information about employees (an
Employee class with information such as employee’s name, social

security number, address, salary, etc.)
Grouping information like this is often called a record.
Let’s try a simple data processing example!

A typical university measures courses in terms of credit hours, and grade point
averages are calculated on a 4 point scale where an “A” Is 4 points, a “B” Is
three, etc.

45

Data Processing with Class

» Grade point averages are generally computed
using quality points. If a class is worth 3 credit
hours and the student gets an “A”, then he or
she earns
3(4) = 12 quality points. To calculate the GPA,
we divide the total quality points by the number
of credit hours completed.

46

Data Processing with Class

* Suppose we have a data file that contains
student grade information.

« Each line of the file consists of a student’s
name, credit-nours, and gquality points.

Adams, Henry 1277 228
Comptewell, Susan 100 400
DibbleBit, Denny 18 41.5
Jones, Jim 48.5 155

Smith, Frank 37 125.33

47

Data Processing with Class

* Our Job Is to write a program that reads this file
to find the student with the best GPA and print
out their name, credit-hours, and GPA.

* The place to start? Creating a Student class!

 We can use a Student object to store this
Information as instance variables.

48

Data Processing with Class

class Student:
def init (self, name, hours, gpoints):
self.name = name
self.hours = float (hours)
self.gpolnts = float (gpoints)

* The values for hours are converted to float to
handle parameters that may be floats, Ints, or strings.

e TO create a student record:
aStudent = Student (“Adams, Henry”, 127, 228)

 The coolest thing Is that we can store all the
iInformation about a student in a single variable!

49

Data Processing with Class

« We need to be able to access this information, so we need to
define a set of accessor methods.

def getName (self) :
return self.name

def getHours (self):
return self.hours

def getQPoints (self) :
return self.gpoints

def gpa(self):
return self.gpoints/self.hours

* For example, to print a student’'s name you could write:
print aStudent.getName ()

50

Data Processing with Class

* How can we use these tools to find the student
with the best GPA?

* We can use an algorithm similar to finding the
max of n numbers! We could look through the
list one by one, keeping track of the best
student seen so far!

o1

Data Processing with Class

Get the file name from the user
Open the file for reading
Set best to be the first student
For each student s 1n the file
1f s.gpa() > best.gpa
set best to s

Print out information about best

52

Data Processing with Class

gpa.py def main():
Program to find student with highest GPA filename = input("Enter name the grade file: ")
infile = open(filename, 'r")
class Student: best = makeStudent(infile.readline())
for line in infile:
def __init__ (self, name, hours, gpoints): s = makeStudent(line)
self.name = name if s.gpa() > best.gpa():
self.hours = float(hours) best=s
self.gpoints = float(gpoints) infile.close()
print("The best student is:", best.getName())
def getName(self): print ("hours:", best.getHours())
return self.name print("GPA:", best.gpa())
def getHours(self): if _name_ ==' main__ "
return self.hours main()
def getQPoints(self):

return self.gpoints

def gpa(self):
return self.gpoints/self.hours

def makeStudent(infoStr):
name, hours, gpoints = infoStr.split("\t")
return Student(name, hours, gpoints)

53

Encapsulating Useful Abstractions

Defining new classes (like Projectile and Student) can be a good way to
modularize a program.

Once some useful objects are identified, the implementation details of the
algorithm can be moved into a suitable class definition.

The main program only has to worry about what objects can do, not about how
they are implemented.

In computer science, this separation of concerns is known as encapsulation.

The implementation details of an object are encapsulated in the class
definition, which insulates the rest of the program from having to deal with
them.

o4

Encapsulating Useful Abstractions

One of the main reasons to use objects is to hide the internal complexities of
the objects from the programs that use them.

From outside the class, all interaction with an object can be done using the
Interface provided by its methods.

One advantage of this approach is that it allows us to update and improve
classes independently without worrying about “breaking” other parts of the
program, provided that the interface provided by the methods does not
change.

55

Putting Classes In Modules

* Sometimes we may program a class that could
useful in many other programs.

* |f you might be reusing the code again, put it into
Its own module file with documentation to describe
how the class can be used so that you won’t have
to try to figure it out in the future from looking at the
code!

56

Module Documentation

* You are already familiar with “# to indicate
comments explaining what’s going on in a Python
file.

* Python also has a special kind of commenting
convention called the docstring. You can insert a
plain string literal as the first line of a module,
class, or function to document that component.

o7

Module Documentation

* Why use a docstring?
— Ordinary comments are ignored by Python

— Docstrings are accessible in a special attribute called
doc

» Most Python library modules have extensive
docstrings. For example, if you can’t remember how to
use random.

>>> 1mport random
>>> print random.random. doc
random() -> x 1n the i1nterval [0, 1).

58

Module Documentation

* Docstrings are also used by the Python online help
system and by a utility called PyDoc that automatically
builds documentation for Python modules. You could
get the same information like this:

>>> 1mport random
>>> help (random.random)
Help on built-in function random:

random (...)
random() -> x 1n the i1nterval [0, 1).

59

Module Documentation

 To see the documentation for an entire module,
try typing help (module name)!

* The following code for the projectile class has
docstrings.

60

Module Documentation

projectile.py

"""projectile.py
Provides a simple class for modeling the flight of projectiles."""

from math import pi, sin, cos
class Projectile:

"""Simulates the flight of simple projectiles near the earth's
surface, ignoring wind resistance. Tracking is done in two
dimensions, height (y) and distance (x)."""

def 1init (self, angle, velocity, height):
"""Create a projectile with given launch angle, initial
velocity and height."""
self.xpos = 0.0
self.ypos = height
theta = pi * angle / 180.0
self.xvel = velocity * cos(theta)
self.yvel = velocity * sin(theta)

61

Module Documentation

def update(self, time):

def

def

"""Update the state of this projectile to move it time seconds
farther into its flight"""

self.xpos = self.xpos + time * self.xvel

yvell = self.yvel - 9.8 * time

self.ypos = self.ypos + time * (self.yvel + yvell) / 2.0
self.yvel = yvell

getY (self) :
"Returns the y position (height) of this projectile."”
return self.ypos

getX (self) :
"Returns the x position (distance) of this projectile.”
return self.xpos

62

Working with Multiple Modules

« Our main program can import from the projectile module in order
to solve the original problem!

cballd.py
Simulation of the flight of a cannon ball (or other projectile)
This version uses a separate projectile module file

from projectile import Projectile

def getInputs() :
a = eval (input ("Enter the launch angle (in degrees): "))
= eval (input ("Enter the initial velocity (in meters/sec): "))

v
h = eval (input ("Enter the initial height (in meters): "))

= eval (input ("Enter the time interval between position calculations: "))
eturn a,v,h,t

def main () :
angle, vel, hO, time = getlInputs/()
cball = Projectile(angle, vel, hO)
while cball.getY () >= O0:
cball.update (time)
print ("\nDistance traveled: {0:0.1f} meters.".format (cball.getX())

63

Working with Multiple Modules

« If you are testing a multi-module Python program, you need to be aware that
reloading a module may not behave as you expect.

« When Python first imports a given module, it creates a module object that
contains all the things defined in the module (a namespace). If a module
Imports successfully (no syntax errors), subsequent imports do not reload the
module. Even if the source code for the module has been changed, re-
Importing it into an interactive session will not load the updated version.

 The easliest way — start a new interactive session for testing whenever any of
the modules involved In your testing are modified. This way you’re guaranteed
to get a more recent import of all the modules you’re using.

64

Widgets

* One very common use of objects Is In the design of
graphical user interfaces (GUIs).

» Back in chapter 5 we talked about GUIs being
composed of visual interface objects known as
widgets.

 The Entry object defined in our graphics library
IS one example of a widget.

65

Example Program: Dice Roller

* Let’s build a couple useful widgets!

* Consider a program that rolls a pair of six-sided
dice.

* The program will display the dice graphically
and provide two buttons, one for rolling the dice
and one for quitting the program.

66

Example Program: Dice Roller

* There are two kinds of
widgets: buttons and
dice.

=" Dice Roller - B

* The two buttons will be ! -
examples of the Button
class, while the dice
images will be provided

by dieView.

67

Building Buttons

Most modern GUIs have buttons with 3-dimensional look and feel. Our simple
graphics package does not have the machinery to produce buttons that
appear to depress as they are clicked.

All we can do Is report back where the mouse was clicked after the click has
been completed.

Our buttons will be rectangular regions in a graphics window where user clicks
can influence the behavior of the running application.

We need a way to determine whether a button has been clicked.

It would be nice to be able to activate and deactivate (gray-out) individual
buttons.

68

Building Buttons

Constructor — Create a button in a window. We will specify the window,
location/size of the button, and the label on the button.

Activate — Set the state of the button to active.
Deactivate — Set the state of the button to inactive.
Clicked- Indicate if the button was clicked. If the button is active, this method

will determine If the point clicked is inside the button region. The point will have
to be sent as a parameter to the method.

getLabel- Returns the label string of a button. This is provided so that we can
identify a particular button.

69

Building Buttons

To support these operations, our buttons will need a number of instance
variables.

For example, buttons are drawn as a rectangle with some text centered on it.
Invoking the activate and deactivate methods will change the

appearance of the buttons.

Saving the Rectangle and Text objects as instance variables means we will
be able to control the width of the outline and color of the label.

Let’s try writing these methods and build up a list of possible instance
variables! Once we have the list, we can write the constructor to initialize them.

70

Building Buttons

In activate, we can signal a button is active by making its
outline thicker and making the label text black.
def activate(self) :
"Sets this button to 'active'. "
self.label.setFill ('black')

self.rect.setWidth (2)
self.active = True

Remember, self refers to the button object.

Our constructor will have to Initialize self.label asan
appropriate Text object and self.rect as arectangle object.

Self.active also has a Boolean in_stance variable to
remember whether or not the button is currently inactive.

71

Building Buttons

The code for deactivate IS very similar:
def deactivate (self) :
"Sets this button to 'inactive'."
self.label.setFi1ll ('darkgrey')
self.rect.setWidth (1)
self.active = 0

Let’s work on the c1icked method.

The graphics package has the getMouse method to see if and where the
mouse has been clicked.

If an application needs to get a button click, it will have to first call getMouse
and then see which button, if any, the point is inside of.

72

Building Buttons

pt = win.getMouse ()

1f buttonl.clicked (pt) :
Do buttonl stuff

elif buttonZ2.clicked(pt):
Do button2 stuff

elif button3.clicked(pt):
Do button3 stuff

 The main job of the clicked method is to determine whether a given point is
Inside the rectangular button.

 The point is inside the button if its x and y coordinates lie between the extreme
x and y values of the rectangle.

« This would be easiest if the button object had the min and max values of x and
y as instance variables.

/3

Building Buttons

def clicked(self, p):
"RETURNS true i1f button active and p 1s 1nside"“

return self.active and \
self.xmin <= p.getX () <= self.xmax and \

self.ymin <= p.get¥Y () <= self.ymax

* For this function to return True, all three parts of the
Boolean expression must be true.

* The first part ensures that only active buttons will
return that they have been clicked.

* The second and third parts ensure that the x and y
values of the point that was clicked fall between the

boundaries of the rectangle.

74

Building Buttons

* The only part that is left is to write the constructor:

def 1nit (self, win, center, width, height, label):
""" Creates a rectangular button, eg:
gb = Button (myWin, Point (30,25), 20, 10, 'Quit') """

w,h = width/2.0, height/2.0

X,y = center.getX(), center.getY ()
self.xmax, self.xmin = xX+w, X-W
self.ymax, self.ymin = y+h, y-h
pl = Point(self.xmin, self.ymin)
p2 = Point (self.xmax, self.ymax)

self.rect = Rectangle (pl,p2)
self.rect.setFill ('lightgray"')
self.rect.draw(win)

self.label = Text (center, label)
self.label.draw(win)
self.deactivate ()

. Buttons are positioned by providing a center point,
width, and height.

75

